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a b s t r a c t 

Transfer learning (TL) can improve the performance of a single-modal medical imaging-based computer- 

aided diagnosis (CAD) by transferring knowledge from related imaging modalities. Support vector ma- 

chine plus (SVM + ) is a supervised TL classifier specially designed for TL between the paired data in the 

source and target domains with shared labels. In this work, a novel deep neural network (DNN) based 

SVM + (DSVM + ) algorithm is proposed for single-modal imaging-based CAD. DSVM + integrates the bi- 

channel DNNs and SVM + classifier into a unified framework to improve the performance of both feature 

representation and classification. In particular, a new coupled hinge loss function is developed to con- 

duct bidirectional TL between the source and target domains, which further promotes knowledge trans- 

fer together with the feature representation under the guidance of shared labels. To alleviate the overfit- 

ting caused by the increased parameters in DNNs for limited training samples, the meta-learning based 

DSVM + (ML-DSVM + ) is further developed, which designs randomly selecting samples from the training 

data instead of other CAD tasks for meta-tasks. This sampling strategy also can avoid the issue of class 

imbalance. ML-DSVM + is evaluated on three medical imaging datasets. It achieves the best results of 

88.26 ±1.40%, 90.45 ±5.00%, and 87.63 ±5.56% on accuracy, sensitivity and specificity, respectively, on the 

Bimodal Breast Ultrasound Image dataset, 90.00 ±1.05%, 72.55 ±3.87%, and 96.40 ±2.26% of the correspond- 

ing indices on the Alzheimer’s Disease Neuroimaging Initiative dataset, and 85.76 ±3.12% of classification 

accuracy, 88.73 ±7.22% of sensitivity, and 82.60 ±1.56% of specificity for the Autism Brain Imaging Data 

Exchange dataset. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Medical imaging-based computer-aided diagnosis (CAD) has at- 

racted great attention in recent years, which helps radiologists to 

mprove diagnosis accuracy together with good consistency and re- 

roducibility [1] . 

It is well known that multi-modal medical imaging can provide 

ore comprehensive information for clinical diagnosis. Therefore, 

 multi-modal imaging-based CAD generally outperforms the cor- 

esponding single-modal approach. However, in clinical practice, 
∗ Corresponding author at: School of Communication and Information Engineer- 

ng, Shanghai University, No. 99, Shangda Road, Shanghai, China. 
∗∗ Corresponding author at: School of Biomedical Engineering, ShanghaiTech Uni- 

ersity, No. 393, Middle Huaxia Road, Shanghai, China. 
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031-3203/© 2022 Elsevier Ltd. All rights reserved. 
he diagnosis costs increase with more modalities, and advanced 

ulti-modal imaging devices are always scarce in most hospitals, 

hich limits the wide application of multi-modal imaging-based 

AD [2] . In contrast, single-modal imaging-based CAD has wider 

nd more flexible applications, especially in rural areas, but single- 

odal imaging provides only one-fold type of information for di- 

gnosis, which limits the performance of its corresponding CAD. 

herefore, it is necessary to further improve single-modal imaging- 

ased CAD with advanced artificial intelligence techniques. 

Transfer learning (TL) aims to transfer knowledge from the re- 

ated source domain (SD) to the target domain (TD) to improve the 

odel performance in TD [3] . TL has been successfully applied in 

he analysis and processing of medical images. Some recent stud- 

es indicate that TL can effectively promote the diagnosis accu- 

acy of single-modal imaging-based CAD by transferring knowledge 

rom related imaging modalities or diseases [4] . TL is also an ef- 

ective way to alleviate the small sample size (SSS) problem [3] , 
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hich commonly exists in the field of CAD because of the time- 

onsuming and expensive procedure of collection and annotation 

f medical images [1] . However, these current works mainly adopt 

onventional TL methods for medical imaging data, and there is 

till room for improvement by making full use of the properties of 

ulti-modal imaging, such as label information. 

In fact, multi-modal imaging data generally share the same la- 

el, because they scan the same organs or tissues of a subject. 

he shared label information is expected to help explore more 

ransferable knowledge and improve knowledge transfer in a su- 

ervised manner. However, conventional TL algorithms generally 

ave no constraints on data labels of the SD and the TD, and 

annot make full use of label information to guide knowledge 

ransfer [3] . 

Learning using privileged information (LUPI) is a supervised TL 

aradigm, which is specially designed for the paired data in the 

D (also called privileged information in LUPI) and TD with shared 

abels [5] . Support vector machine plus (SVM + ) is a typical LUPI- 

ased classifier that adopts an additional SD to help construct an 

ptimal separating hyperplane [5] . SVM + generally outperforms 

he conventional TL classifiers because the shared labels can ef- 

ectively guide and improve knowledge transfer. Therefore, SVM + 

nd its variants have been successfully applied to TL-based CAD 

6] . However, its performance is usually limited by a small number 

f paired training samples with shared labels. 

On the other hand, deep learning (DL) has shown its effective- 

ess for feature representation, which is critical in a CAD system 

1] . In addition to end-to-end DL methods (such as convolutional 

eural networks (CNN)) for classification tasks, it is also an al- 

ernative and popular approach to further learn and improve fea- 

ure representation from hand-crafted features by using other deep 

eural network (DNN) algorithms, such as stacked auto-encoder 

SAE) [7] and deep belief networks (DBN), especially on limited 

amples [8] . This strategy has also been widely used in the field 

f CAD because of the SSS problem [1] . However, most of these 

NN algorithms perform unsupervised learning, and they are in- 

ependent of the classifier module in a CAD system. This suggests 

hat DNN-based feature learning can be further improved with 

he guidance of labels in a supervised manner [9] . Therefore, inte- 

rating both DNN and SVM + classifier construction into a unified 

ramework, named DSVM + in this work, is expected to improve 

 CAD system. Furthermore, because DSVM + contains a bi-channel 

NNs, the bidirectional transfer strategy can be used to further im- 

rove its performance, which has shown its superior performance 

o the unidirectional TL [10] . 

It is worth noting that the introduction of DNNs into DSVM + 

ill significantly increase the parameters in the model, which may 

esult in an overfitting problem when the labeled training data 

re not provided sufficiently [11] . Meta-learning is one of the ap- 

roaches for few-shot learning [12] . Its main idea is to train a 

eta-model to capture common characteristics across a set of dif- 

erent tasks as prior information, which is then effectively adapted 

o a new task with only a few labeled training data [12] . Meta-

earning has been successfully used for various few-shot learn- 

ng tasks [13] , such as classification, regression, and reinforcement 

earning. These studies indicate that meta-learning has the poten- 

ial to improve the performance of DNN-based TL algorithms. 

In this work, we propose a novel meta-learning based DSVM + 

ML-DSVM + ) algorithm to improve single-modal imaging-based 

AD by transferring knowledge from other related imaging modal- 

ties. ML-DSVM + contains three modules, namely the meta- 

ampling module, bi-channel DNNs, and an SVM + classifier. A ran- 

om sampling strategy is used to generate meta-tasks for meta- 

raining and meta-validation. Then, we propose a coupled hinge 

oss to optimize the bi-channel DNNs and the SVM + classifier in a 

nified framework. The proposed ML-DSVM + is evaluated on three 
2 
edical imaging datasets, and all the experimental results show its 

ffectiveness on the problems of SSS and class imbalance. 

The main contributions of this work are following three-fold: 

1) We propose a novel DSVM + classifier to improve the perfor- 

mance of single-modal imaging-based CAD with transferable 

knowledge. DSVM + integrates the bi-channel DNNs and SVM + 

classifier into a unified framework for jointly learning, which 

can effectively improve the performance of both feature rep- 

resentation of DNNs and SVM + classifier with the guidance of 

shared labels in a supervised manner. 

2) We develop a new coupled hinge loss function in DSVM + to 

perform bidirectional knowledge transfer between SD and TD 

instead of the unidirectional approach in the original SVM + , 

which can promote the feature learning in both domains and 

also extract more transferable knowledge simultaneously. 

3) We further propose a meta-learning based DSVM + (ML- 

DSVM + ) algorithm with a new meta-learning strategy. ML- 

DSVM + self-generates the meta-tasks by randomly selecting 

samples from the bimodal training data. This strategy not only 

improves the performance of DSVM + with a small number of 

training samples, but also alleviates the issue of class imbalance 

to a certain extent. 

. Related work 

The existing LUPI works mainly focus on developing LUPI-based 

lassifiers. SVM + is a classical approach under the LUPI paradigm 

5] , and many improved SVM + algorithms have been proposed, 

uch as robust SVM + [14] , fast SVM + [15] , adaptive SVM + [16] ,

nd multi-view SVM + [17] . These algorithms have been success- 

ully applied for different classification tasks, indicating the effec- 

iveness of the LUPI paradigm. 

Recently, several pioneering works have shown the effective- 

ess of LUPI in CADs. For example, Duan et al. used the single 

ucleic polymorphisms as SD for the fundus image based glau- 

oma detection with SVM + [6] ; Zheng et al. developed a boosted 

UPI classification framework by ensembling multiple SVM + clas- 

ifiers for magnetic resonance imaging (MRI) based diagnosis of 

rain disorders [18] ; Alahmadi et al. utilized generalized matrix 

earning vector quantization (GMLVQ) classifier to diagnose mild 

ognitive impairment (MCI), which adopted cognitive data as the 

iagnostic data with fMRI data as SD [19] . All these works sug- 

est that the LUPI paradigm is suitable for promoting single-modal 

maging-based CAD by adopting the corresponding modality as SD 

ith shared labels. However, these LUPI classifiers still have room 

o be improved. For example, the current feature representation 

nd SVM + are separated modules, and the weak representation 

ill degrade the classification performance. It is expected to im- 

rove their performance by integrating both modules into a unified 

ramework for jointly learning. 

In fact, SVM has been successfully embedded in the DL-based 

lassification models followed after a DNN or CNN [9] [20] . Tang re- 

laced the softmax classifier in a DNN-based classification model 

ith the linear SVM, and used the objective function of L2-SVM 

o train DNN for the classification [9] . Although its optimization 

rocedure becomes more complex than the models with a soft- 

ax classifier, the classification performance generally improves. 

i and Zhang proposed a deep neural mapping SVM (DNMSVM) 

lgorithm by taking the DNN as a kernel mapping from the orig- 

nal input space into a feature space [20] . It is worth noting that 

he DNN in SVM can approximate kernel mapping to avoid the is- 

ue of kernel selection, because according to the universal approx- 

mation theorem, any multivariate continuous function can be well 

pproximated by a neural network under certain conditions [21] . 
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herefore, we propose a DNN-based SVM + (DSVM + ) to improve 

he performance of the original SVM + . 

On the other hand, bidirectional learning is another effective 

pproach to improve the transfer performance of TL. It not only 

mproves the performance of both domains, but also reduces the 

ependency on a large number of training data compared with 

nidirectional learning [10] . This strategy has attracted consider- 

ble attention in recent years. For example, Chen et al . proposed 

n unsupervised bidirectional cross-modality algorithm to conduct 

idirectional domain adaptation between MRI and computed to- 

ography (CT) images, which improved the performance of the 

egmentation network in the TD [22] ; Li et al . developed a bidirec-

ional learning framework for semantic image segmentation task, 

n which the image translation model and the segmentation adap- 

ation model could be trained alternatively to promote each other 

10] . Inspired by the effectiveness of this strategy, we propose a 

oupled hinge loss to perform bidirectional knowledge transfer, 

hich alternatively makes SD and TD serve as privileged informa- 

ion for each other to learn and extract more implicit transferable 

nowledge between the bi-channel DNNs in DSVM + . 

Although DSVM + can improve TL performance, it has also sig- 

ificantly increased model parameters, resulting in an overfitting 

roblem for limited medical imaging. Meta-learning provides an 

ffective way to alleviate the SSS problem in DNN by learning a 

pecific base-learner for a new task by training on a set of different 

asks [1] . Existing meta-learning methods can be divided mainly 

nto three categories: 1) model-based approaches that aim to use 

 hand-designed meta-learner to optimize the model with limited 

raining data; 2) metric-based methods that focus on learning an 

ffective metric or distance function for samples in the same class; 

) optimization-based methods that try to learn a parameterized 

ase-learner for a new task with only a few gradient descent steps. 

he first and second approaches require complicated and manu- 

lly designed optimization models, while recent studies indicate 

hat optimization-based meta-learning methods are more suitable 

or DNN-based architectures [23] . Therefore, we propose an ML- 

SVM + algorithm based on the latter to alleviate the problems of 

SS or class imbalance. 

Conventional meta-learning methods require a large number of 

ifferent meta-tasks to train a robust meta-model. However, it is 

enerally difficult to collect and generate many different classifica- 

ion meta-tasks in most medical applications. To this end, we pro- 

ose a new meta-learning strategy to improve DSVM + , where mul- 

iple meta-tasks are generated by direct random selecting from the 

imodal training samples. Meanwhile, because we randomly select 

n equal number of samples from positive and negative classes to 

uild a meta-task each time, the class imbalance problem can be 

voided in the training dataset. 

. Method 

.1. Preliminary of SVM + 

For a binary classification task, given a training set D = 

 ( x t 
i 
, x s 

i 
, y i ) } N i =1 

, where x t 
i 

and x s 
i 

are a pair of feature vectors for

he i -th sample from TD and SD, respectively, y i is the shared label 

y x t 
i 

and x s 
i 
. SVM + solves the constrained optimization problem 

s follows: 

in 

1 

2 

(∥∥w 

t 
∥∥2 + λ‖ 

w 

s ‖ 

2 
)

+ C 

N ∑ 

i =1 

(
ξ
(
w 

s , b s , ψ 

(
x s i 

)))
(1) 

 . t . y i ( w 

t φ( x t 
i 
) + b t ) ≥ 1 − ξ ( w 

s , b s , ψ( x s 
i 
) ) and ξ ( w 

s , b s , ψ( x s 
i 
) ) ≥

 , i = 1 , . . . , Nwhere ( w 

t , b t ) and ( w 

s , b s ) are the weight vector and

ias parameters in TD and SD, respectively, φ(·) and ψ(·) denote 

he feature mapping function induced by the kernel in TD and SD, 
3 
espectively, ξ ( w 

s , b s , ψ( x s 
i 
) ) = w 

s x s 
i 
+ b s is a slack function (or cor- 

ecting function) defined in the SD, λ > 0 is the trade-off parame- 

er, and C > 0 is the penalty parameter. 

.2. DSVM + 

To improve the performance of SVM + , a DNN-based SVM + is 

roposed in this study. As shown in Fig. 1 , DSVM + consists of two

odules: the bi-channel DNNs and the SVM + classifier. The for- 

er contains two DNNs with the same architecture corresponding 

o the fed features in SD and TD. The latter utilizes the knowl- 

dge learned from SD to guide the learning of classification hyper- 

lane and then train a powerful classifier in TD. DSVM + integrates 

he bi-channel DNNs and SVM + classifier into a unified framework 

nd then simultaneously improves the performance of feature rep- 

esentation and classification with the guidance of shared labels. 

n particular, we propose a coupled hinge loss to perform bidi- 

ectional knowledge transfer between SD and TD, which can learn 

nd extract more transferable knowledge as well as simultaneously 

romote feature learning in both domains. 

1) Training stage of DSVM + 

As shown in Fig. 1 , the bi-channel DNNs in both TD and SD 

ave the same network structure. The TD network can be com- 

uted by: 

 

a t 0 = x t 

a t 
l 
= relu 

(
W 

t 
l 

a t 
l−1 

+ b t 
l 

)
, l = 1 , . . . , L 

z t = W 

t 
L a 

t 
L −1 + b t L 

(5) 

here a t 
l 
, W 

t 
l 

and b t 
l 

are the output, weight matrix and bias vector 

f the l -th layer in the TD network, respectively, and z t denotes 

he output of the TD network. The widely used activation function 

elu (x ) = max ( x, 0 ) is used here. 

Similarly, the DNN in the SD network can be computed as: 

 

a s 0 = x s 

a s 
l 
= relu 

(
W 

s 
l 

a s 
l−1 

+ b s 
l 

)
, l = 1 , . . . , L 

z s = W 

s 
L a 

s 
L −1 + b s L 

(6) 

here ( a s 
l 
, W 

s 
l 
, b s 

l 
) ar e the output, weight matrix and bias vector of 

he l -th layer in the SD network, respectively, and z s is the output 

f the SD network. 

We develop the following coupled hinge loss for the DSVM + : 

 

(
W 

t 
L , b 

t 
L , W 

s 
L , b 

s 
L 

)
= L 

t 
(
W 

t 
L , W 

s 
L , b 

t 
L 

)
+ L 

s 
(
W 

t 
L , W 

s 
L , b 

s 
L 

)

+ L 

coupled 
(
W 

t 
L , W 

s 
L , b 

t 
L , b 

s 
L 

)
(7) 

here L 

t ( W 

t 
L 
, W 

s 
L 
, b t 

L 
) and L 

s ( W 

t 
L 
, W 

s 
L 
, b s 

L 
) are the classification 

erms in TD and SD, respectively, and L 

coupled ( W 

t 
L 
, W 

s 
L 
, b t 

L 
, b s 

L 
) is the 

oupled term. These three components are defined by: 

 

t 
(
W 

t 
L , W 

s 
L , b 

t 
L 

)

= min 

λ2 

2 

‖ 

W 

s 
L ‖ 

2 + C 1 
∑ 

max 
(
0 , 1 − y 

(
W 

t 
L a 

t 
L −1 + b t L 

))2 
(8) 

 

s 
(
W 

t 
L , W 

s 
L , b 

s 
L 

)

= min 

λ1 

2 

∥∥W 

t 
L 

∥∥2 + C 2 
∑ 

max 
(
0 , 1 − y 

(
W 

s 
L a 

s 
L −1 + b s L 

))2 
(9) 

 

coupled 
(
W 

t 
L , W 

s 
L , b 

t 
L , b 

s 
L 

)

= min 

∑ 

max 
(
0 , 1 − y 

(
W 

t 
L a 

t 
L −1 + b t L + W 

s 
L a 

s 
L −1 + b s L 

))2 
(10) 

here the first terms in Eq. (8) and (9) are the regularization terms 

n the bi-channel DNNs to avoid the overfitting, λ > 0 and λ > 0 
1 2 
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Fig. 1. Architecture of the proposed DSVM + algorithm and flowchart of its training and testing stages. During the training stage, both TD and SD data are used to train the 

bi-channel DNNs and the SVM + classifier, and the coupled hinge loss makes full use of the shared labels to perform bidirectional knowledge transfer between DNNs. In the 

testing stage, only TD data is available to predict the classification results. 
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Algorithm 1 DSVM + 

Input: Training set D = { ( x t 
i 
, x s 

i 
, y i ) } N i =1 

Initialization: Set learning rate α, randomly initialize W 

t 
l 
, b t 

l 
, W 

s 
l 
, b s 

l 
, l = 1 , . . . , L 

1: while not convergence do 

2: Bidirectional transfer strategy: 

3: Forward propagation in TD: Compute a t 
l 
, l = 1 , . . . , L − 1 , and z t by (5) , and 

compute L t by (8) ; 

4: Forward propagation in SD: Compute a s 
l 
, l = 1 , . . . , L − 1 , and z s by (6) , 

and compute L s by (9) ; 

5: Compute the coupled loss values by (10) and calculate the total loss; 

6: Backward propagation in TD: Compute { ∇ W t 
l 
L } L 

l=1 
and { ∇ b t 

l 
L } L 

l=1 
, 

and update { W 

t 
l 
} L 

l=1 
, { b t 

l 
} L 

l=1 
as follows: W 

t 
l 

= W 

t 
l 

− α∇ W t 
l 
L , b t 

l 
= b t 

l 
− α∇ b t 

l 
L 

7: Backward propagation in SD: Compute { ∇ W s 
l 
L } L 

l=1 
and { ∇ b s 

l 
L } L 

l=1 
, 

and update { W 

s 
l 
} L 

l=1 
, { b s 

l 
} L 

l=1 
as follows: W 

s 
l 

= W 

s 
l 

− α∇ W s 
l 
L ) , b s 

l 
= b s 

l 
− α∇ b s 

l 
L 

8: end 

(

o  

d

y

w

s

3

e

c

m

l

D

c

re trade-off parameters to balance the relationship between the 

wo domains, and C 1 > 0 and C 2 > 0 are the parameters to balance 

he hinge loss and regularizers in the TD and SD, respectively. 

Comparted with the original SVM + that includes only one 

inge loss to learn a decision relu in TD, we adopt two clas- 

ification terms L 

t ( W 

t 
L 
, W 

s 
L 
, b t 

L 
) and L 

s ( W 

t 
L 
, W 

s 
L 
, b s 

L 
) for the corre- 

ponding bi-channel DNNs. Each classification term can not only 

rain an independent classifier, but also optimize the correspond- 

ng DNN in a unified framework. Since the bimodal imaging 

ata provide complementary information, they can learn addi- 

ional knowledge from each other. Thus, we develop a new coupled 

erm L 

coupled ( W 

t 
L 
, W 

s 
L 
, b t 

L 
, b s 

L 
) in hinge loss to perform bidirectional 

nowledge transfer between bimodal data under the guidance of 

hared label y . In this unified framework, the coupled hinge loss 

an simultaneously improve the performance of both feature rep- 

esentation of the bi-channel DNNs and the corresponding two 

lassifiers. Moreover, it can capture more transferable knowledge 

rom two domains. It is worth noting that the regularization term 

f the hinge loss is applied on the last layer of DNN in DNMSVM

20] , which is considered as the feature representation of DNN for 

he followed SVM. Therefore, we also introduce two regularization 

erms only on the last layer in DSVM + . 

To optimize DSVM + , the stochastic gradient descent (SGD) algo- 

ithm is adopted with random initialization for training, such that 

he parameters are updated by: 

 

t = W 

t − α∇ W 

t L 

b t = b t − α∇ b t L 

 

s = W 

s − α∇ W 

s L 

b s = b s − α∇ b s L 

(11) 

After several iteration steps, both the classification performance 

nd feature representation of DSVM + can be improved progres- 

ively and simultaneously. 

The procedure for jointly optimizing the network in both TD 

nd SD is summarized in Algorithm 1 . 
4 
1) Testing stage of DSVM + 

During the testing stage, the SD modality is not available, and 

nly the TD modality is fed to the trained DSVM + . The final pre-

iction is given by: 

 pred = sign 

(
W 

t 
L a 

t 
L −1 + b t L 

)
(12) 

here W 

t 
L 

and b t 
L 

are the optimized parameters in the training 

tage, and a t 
L −1 

is the output of the ( L- 1)-th layer in TD. 

.3. ML-DSVM + 

Although DSVM + can improve feature representation and then 

xplore more transferable knowledge from both domains, the bi- 

hannel DNNs significantly introduce more parameters into this 

odel, easily resulting in overfitting when the training data are 

imited bimodal. Meta-learning effectively alleviates this issue in a 

L model by learning knowledge from other related tasks [13] . The 

onventional meta-learning methods required a lot of similar tasks 
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Fig. 2. Flowchart of the proposed ML-DSVM + algorithm. A random sampling strategy is adopted to generate meta-tasks. The training procedure in meta-learning includes 

two stages, the meta-training stage (also called the inner loop) and the meta-validation stage (also called the outer loop). 
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o learn a robust model [13] . However, it is generally difficult to 

ollect lots of medical imaging data from different modalities and 

iseases to design related CAD tasks as meta-tasks, because both 

ata collection and annotation are extremely time-consuming and 

xpensive [1] . To this end, we propose to adopt a random sampling 

trategy to self-generate meta-tasks only from the training samples 

or ML-DSVM + in this work, which also can alleviate the problem 

f class imbalance. 

As shown in Fig. 2 , we propose a meta-learning based DSVM + ,

.e. , ML-DSVM + . A random sampling strategy is adopted on the bi-

odal data to build multiple meta-tasks, which are then utilized to 

rain the base-learner (DSVM + ). Each meta-task contains an equal 

umber of positive and negative bimodal samples. The training 

rocedure of ML-DSVM + includes two stages: the meta-training 

tage (also named the inner loop) and the meta-validation stage 

also called the outer loop). After training the DSVM + model, only 

n image of the target modality is fed to DSVM + to conduct the 

isease prediction. 

Suppose that the data distribution over the dataset is p(T ) , and 

he proposed DSVM + in Section 3.2 is considered as the base- 

earner f ( W 

t , b t , W 

s , b s ) . A random sampling procedure is used to gen- 

rate multiple meta-tasks { T j } T j=1 
from the data distribution p(T ) . 

n particular, K-positive and K-negative samples are sampled into 

 meta-task. Each meta-task is divided into a training set D 

tr for 

eta-training and a validation set D 

v al for meta-validation. Both 

 

tr and D 

v al contain K /2 positive samples and K /2 negative sam- 

les, respectively (i.e., K -shot). In addition, D 

v al is used to compute 

he second derivative in the meta-validation stage, which should 

ot be confused with the commonly used validation set for model 

election. 

In the meta-training stage, prior knowledge across the meta- 

raining set D 

tr can be learned by gradient-based learning. The 

odel parameters W 

t 
l 
, b t 

l 
, W 

s 
l 

and b s 
l 

are updated iteratively using 

radient descent, and the update rule can be formulated as: 

 

t,new 

l 
= W 

t 
l 

− α∇ W 

t 
l 
L T j 

b t,new 

l 
= b t 

l 
− α∇ b t 

l 
L T j 

 

s,new 

l 
= W 

s 
l 

− α∇ W 

s 
l 
L T j 

b s,new 

l 
= b s 

l 
− α∇ b s L T j 

(13) 
l 

5 
here W 

t,new 

l 
, b t,new 

l 
, W 

s,new 

l 
and b s,new 

l 
are the updated parameters 

uring the meta-training stage, and α denotes the meta-training 

tep size. According to the work done by Finn et al. (2017), mul- 

iple gradient descent steps can be applied in this stage, and we 

onsider one gradient update step in this work. 

During the meta-validation stage, the learned task-level knowl- 

dge is transferred to the base-learner through the second deriva- 

ives across the meta-validation set D 

v al . The updated parameters 

 

t,new 

l 
, b t,new 

l 
, W 

s,new 

l 
and b s,new 

l 
in Eq. (13) are considered as the 

nitialization in the meta-validation stage, and then the object of 

eta-validation is formulated as: 

min 

 

t 
l 
,b t 

l 
,W 

s 
l 
, b s 

l 

∑ 

D v al 

L T j 

(
f W 

t,new 
l 

,b t,new 
l 

,W 

s,new 
l 

, b s,new 
l 

)
(14) 

As observed in Eq. (14) , the meta-validation involves second 

erivatives, which require the computation of Hessian-vector prod- 

cts. The resulting update for the model parameters W 

t 
l 
, b t 

l 
, W 

s 
l 
, b s 

l 
an be expressed as 

 

t 
l 

= W 

t,new 

l 
− β∇ W 

t,new 
l 

∑ 

D v al 

L T j 

b t 
l 
= b t,new 

l 
− β∇ b t,new 

l 

∑ 

D v al 

L T j 

 

s 
l 

= W 

s,new 

l 
− β∇ W 

s,new 
l 

∑ 

D v al 

L T j 

b s 
l 
= b s,new 

l 
− β∇ b s,new 

l 

∑ 

D v al 

L T j 

(15) 

here β is the meta-validation step size. 

Algorithm 2 summarizes the training process of ML-DSVM + . 

It is worth noting that in the existing meta-learning methods, 

he meta-tasks and the target task are generally developed based 

n different datasets or modalities, and the fine-tuning is then con- 

ucted on the trained model by meta-learning with limited train- 

ng data of the target task. However, in this work, there are no ad- 

itional training samples from other modalities or other diseases 

hat are used for building the meta-tasks during the meta-training 

nd meta-validation stages, and the diagnosis modality in the tar- 

et domain is the same as the diagnosis modality in the source 

omain. Therefore, the fine-tuning stage is not necessary in this 

ork. 
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Algorithm 2 ML-DSVM + 

Input: Meta-tasks T j = ( D tr , D v al ) 

Initialization: Set step size α, β , randomly initialize W, b

1: while not convergence do 

2: Meta-training stage: 

3: for each D tr , do 

4: Forward propagation based on D tr : 

5: Compute a t 
l 
, l = 1 , . . . , L − 1 , and z t 

6: Compute a s 
l 
, l = 1 , . . . , L − 1 , and z s 

7: Calculate L ( W 

t 
l 
, b t 

l 
, W 

s 
l 
, b s 

l 
) by (7) 

8: Compute ∇ W t 
l 
L T j , ∇ b t 

l 
L T j , ∇ W s 

l 
L T j , ∇ b s 

l 
L T j , and update W 

t 
l 
, b t 

l 
, W 

s 
l 
, b s 

l 
by (13) 

9: end for 

10: Meta-validation stage: 

11: Forward propagation using D v al , and calculate L ( W 

t,new 
l 

, b t,new 
l 

, W 

s,new 
l 

, b s,new 
l 

) 

12: Evaluate ∇ W t,new 
l 

L T j , ∇ b t,new 
l 

L T j , ∇ W l 
s,new L T j , ∇ b s,new 

l 
L T j , and update W 

t 
l 
, b t 

l 
, W 

s 
l 
, b s 

l 

by (15) 

13: end 
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. Experiments and results 

.1. Datasets and data processing 

The proposed ML-DSVM + algorithm was evaluated on three 

ulti-modal medical imaging datasets, namely the Bimodal Breast 

ltrasound Image (BBUI) dataset, the Alzheimer’s Disease Neu- 

oimaging Initiative (ADNI) dataset [24] 1 , and the Autism Brain 

maging Data Exchange (ABIDE) dataset [25] 2 . 

BBUI Dataset: This dataset was collected from the Nanjing 

rum Tower Hospital, including 264 pairs of B-mode ultrasound 

BUS) and elastography ultrasound (EUS) images (129 patients with 

enign tumors and 135 patients with malignant cancers). All le- 

ions were underwent biopsy and pathologically proven. Approval 

rom the ethics committee of the hospital was obtained, and all 

atients provided signed informed consent. 

The images in the BBUI were scanned using a Mindray Resona7 

ltrasound scanner with the L11-3U probe by an experienced so- 

ologist. All the acquired BUS and EUS images had the same size 

f 550 ×420 pixels. A region of interest (ROI), including the tumor 

egion, was selected by an experienced sinologist from each ultra- 

ound image. The statistical features, texture features, and features 

f Hu’s invariant moments were then directly extracted from the 

OI without image resizing [26] . The statistical features were cal- 

ulated from the intensities of all pixels, including the mean, stan- 

ard deviation, coefficient of variance, skewness, kurtosis, entropy 

f histogram, area ratio, combined area ratio, several percentiles, 

tc. The texture features were extracted from the gray-level co- 

ccurrence matrix (GLCM), including the energy, contrast, homo- 

eneity, and entropy of GLCM. Moreover, the Hu moment invari- 

nts were also extracted as features. A total of 71 features were 

hus generated from each ROI in both the BUS and EUS images. 

lease refer to [26] for more details about feature extraction. 

In this experiment, we selected the BUS images as TD and the 

US images as SD, because BUS has been widely used for the diag- 

osis of breast cancers in clinical practice, while EUS is yet to be 

sed as a routine diagnostic tool, especially in rural hospitals. 

TADPOLE Challenge Dataset: This dataset was acquired for 

he Alzheimer’s Disease Prediction of Longitudinal Evolution (TAD- 

OLE) challenge 3 , which is a subset of ADNI [24] . In this work, we

elected bimodal imaging data, namely T1-weighted MRI and Flu- 

roDeoxyGlucose positron emission tomography (FDG-PET), cap- 

ured on the same subject at the baseline period (i.e., no reused 

ubjects). After filtering the meaningless data and removing the 
1 http://adni.loni.usc.edu . 
2 http://preprocessed-connectomes-project.org/abide . 
3 https://tadpole.grand-challenge.org/ . 

m

p

6 
issing data from these candidates, 190 subjects (51 AD subjects 

nd 139 MCI subjects) were then obtained in this experiment. Note 

hat this dataset was selected to evaluate the performance of ML- 

SVM + for the classification of imbalanced classes. 

The MRI scans were preprocessed with standard ADNI 

ipelines 4 , including correction for gradient non-linearity and B1 

on-uniformity, and sharpening of the peak. The regional features, 

ncluding ROI volume, ROI cortical thickness, and ROI surface ar- 

as, were then extracted using the FreeSurfer cross-sectional and 

ongitudinal pipelines. After removing the missing values, 343 fea- 

ures were obtained. On the other hand, each FDG-PET image 

as been processed by the standard ADNI protocol 5 , including co- 

egistration, averaging, standardization, and smoothing. After the 

DG-PET images were registered with the corresponding MR im- 

ges, standardized uptake value ratio (SUVR) measures were ex- 

racted for the relevant ROI using the SPM5 software [27] . The 

issing values and meaningless data were filtered, and 158 fea- 

ures were finally obtained for each image. Please refer to the work 

y [28] for more details on the feature extraction of MRI and FDG- 

ET images, respectively. 

PET devices are known to be very expensive and equipped only 

n a few hospitals, while MRI devices are more accessible and 

idely used in clinical practice. Therefore, we considered MRI and 

ET as TD and SD, respectively. 

ABIDE dataset: The ABIDE dataset is a collection of 16 interna- 

ional imaging centers, aiming to study the neural mechanism of 

utism spectrum disorder (ASD) [25] . In our experiment, we used 

oth T1-weighted MRI and resting-state functional magnetic res- 

nance imaging (rs-fMRI) acquired from the New York University 

NYU) Langone Medical Center. After removing the missing and 

eaningless data, we obtained a dataset including 112 subjects (54 

SD patients and 58 normal controls (NC)), who were all between 

 and 15 years of age [29] . 

The primary steps of the preprocessing protocol for rs-fMRI im- 

ges are as follows 6 : discarding the first 10 volumes for magneti- 

ation equilibrium, performing slice timing and head motion cor- 

ection, normalizing the images to the MNI space of the resolution 

 ×3 ×3 mm, conducting the Nuisance variable regression, parcel- 

ating the images into 116 ROIs, applying band-pass filtering, scrub- 

ing the unmatched volumes, and computing the Pearson correla- 

ion coefficients. Finally, a 116 ×116 correlation matrix was obtained 

or each rs-fMRI scan. Functional connectivity (FC) features from 

he gray matter (GM) regions were extracted from the rs-fMRI im- 

ges [29] . We performed the t -test to select the most relevant 303 

eatures, and then a 303-dimensional feature vector was obtained 

or each rs-fMRI scan in our experiment. By contrast, the regional 

orphological features were extracted from MRI scans using the 

reeSurfer pipeline. In particular, multiple atlases containing differ- 

nt ROIs were used to extract the following features: cerebral corti- 

al gray matter (GM) volumes, subcortical white matter (WM) vol- 

mes, mean cortical thickness measures, subcortical structure vol- 

mes, and the volumes and thickness measures of the Brodmann 

reas. A total of 303 features were extracted for each MRI scan in 

ur experiments. Please refer to the works by [29] for more details 

n the feature extraction of MRI scans. 

MRI and rs-fMRI are two widely applied imaging tools for ASD 

iagnosis. Because rs-fMRI generally achieves relatively higher ac- 

uracy than MRI [30] , we selected rs-fMRI as TD and MRI as SD in

his experiment. 
4 See MRI analysis on ADNI website: http://adni.loni.usc.edu/methods/ 

ri-analysis/ mri-pre-processing. 
5 See PET analysis on ADNI website: http://adni.loni.usc.edu/methods/ 

et-analysis/pre-processing . 
6 Standard pipeline provided by ABIDE with AFNI: https://afni.nimh.nih.gov/afni/ . 

http://adni.loni.usc.edu
http://preprocessed-connectomes-project.org/abide
https://tadpole.grand-challenge.org/
http://adni.loni.usc.edu/methods/mri-analysis/
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing
https://afni.nimh.nih.gov/afni/
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Fig. 3. The classification accuracy on the BBUI dataset with different combinations of hidden layers and nodes in the cases of (a) 5-shot, (b) 10-shot, and (c) 15-shot by the 

proposed ML-DSVM + . Each bar shows the average accuracy of 5-fold cross-validation, and the color of each bar is allocated only for better visualization. 

4

l

a

f

t

p

i

a

r

D

i

w

l

v

r

s

i

a

p

d

4

1

h

r

T

l

t

a

r

o

o

a

s

7

a

c

o

.2. Experimental settings 

The proposed ML-DSVM + was compared to the following re- 

ated or state-of-the-art TL algorithms. 

1) SVM [31] : The commonly used SVM was directly performed 

on the TD data without TL. 

2) DNMSVM [20] : This typical DNN-based SVM algorithm was 

performed on the TD data without TL. 

3) DCCA-SVM [32] : The deep canonical correlation analysis 

(DCCA) is a DNN-based CCA algorithm. It can be used for 

feature-level TL, because it learns bimodal representation 

and then handles missing modalities during the testing stage 

[32] . In this experiment, DCCA was conducted on the hand- 

crafted bimodal features, and the learned features corre- 

sponding to the TD modality were then fed to SVM for clas- 

sification. 

4) MRBM-SVM [33] : This multi-modal restricted Boltzmann 

machine (MRBM) algorithm can be used for feature-level TL, 

since it could handle missing modality [33] . Similar to DCCA, 

the finally learned features corresponding to the TD modal- 

ity were fed to SVM. 

5) MDL-CW [34] : MDL-CW is a bi-channel DNN-based multi- 

modal learning algorithm that can learn the cross weights 

between two DNNs. It can perform multi-modal learning 

with shared labels in a supervised manner and handle the 

missing modality in the testing stage. Therefore, it can be 

considered as a deep LUPI algorithm to perform feature-level 

transfer learning. The finally learned features corresponding 

to the TD modality were fed to SVM. 

6) DPL-HD [35] : DPL-HD is a CNN-based deep LUPI algorithm 

for feature-level TL, which utilizes privileged information to 

control the variance of the dropout. To conduct a fair com- 

parison on the hand-crafted features in this work, we mod- 

ified this algorithm by replacing the CNN in DPL-HD with 

DNN. 

7) HFA [36] : The heterogeneous feature augmentation (HFA) 

is a widely used TL classifier algorithm. It was used as 

classifier-level TL. 

8) KRVFL + [37] : The kernel random vector functional link plus 

is a newly proposed LUPI classifier. It was used as classifier- 

level TL. 

9) FSVM + [15] : The fast implementation of SVM + was selected 

as the baseline for classifier-level TL in this work. 

10) U-DSVM + : The unidirectional TL version of DSVM + was 

proposed for classifier-level TL. U-DSVM + only conducted 

unidirectional knowledge transfer from SD to TD using 
7

Eq. (11) and Eq. (13) . The SD network was optimized using 

an independent hinge loss. 

11) DSVM + : The proposed DSVM + algorithm was used for 

classifier-level TL. 

We fed the same hand-crafted features to the proposed DSVM + 

nd ML-DSVM + together with all the compared algorithms for a 

air comparison. The classification performance will be analyzed in 

he following perspectives: (1) U-DSVM + and FSVM + were com- 

ared to evaluate the performance of DNN in U-DSVM + in improv- 

ng the feature representation of hand-crafted features; (2) DSVM + 

nd U-DSVM + were compared to assess the performance of bidi- 

ectional and unidirectional transfer learning; (3) The proposed 

SVM + was compared with other transfer learning algorithms to 

ndicate its effectiveness; (4) ML-DSVM + was finally compared 

ith DSVM + to evaluate the performance of the introduced meta- 

earning strategy. 

All the algorithms were conducted with the five-fold cross- 

alidation strategy to avoid the sampling bias introduced by the 

andomly splitting dataset. The accuracy (ACC), sensitivity (SEN), 

pecificity (SPE) and Youden index (YI) were selected as evaluation 

ndices. The receiver operating characteristic (ROC) curve and the 

rea under the curve (AUC) value were also used to evaluate the 

erformance. The final results were given in the mean ± standard 

eviation format. 

.3. Experimental results on BBUI dataset 

Fig. 3 shows the classification accuracies in 5-shot, 10-shot, and 

5-shot cases of ML-DSVM + , which are performed with different 

idden layers and layer nodes. It can be observed that hyperpa- 

ameter combinations of DNN can affect classification accuracy. 

he best accuracy in the 15-shot is 88.26 ±1.40% with the hidden 

ayers as 3, nodes in each hidden layer as 600, and the parame- 

ers C 1 , C 2 , λ1 and λ2 as 1, 1, 0.05 and 0.05, respectively. The best 

ccuracies in 5-shot and 10-shot are 87.50 ±1.54% and 87.87 ±1.89%, 

espectively. We then use the accuracy in 15-shot to compare with 

ther algorithms with optimized parameters. 

Table 1 shows the classification results of different algorithms 

n the BBUI dataset. It can be seen that the proposed ML-DSVM + 

chieves the best mean classification accuracy of 88.26 ±1.40%, 

ensitivity of 90.45 ±5.00%, specificity of 87.63 ±5.56%, and YI of 

8.08 ±4.45%. 

In particular, compared with FSVM + , U-DSVM + improves the 

ccuracy by 1.51%, sensitivity by 3.03% and YI by 3.02%. It indi- 

ates that DNN can effectively im prove the feature representation 

f the hand-crafted features. DSVM + improves 1.07%, 0.71%, 3.41%, 
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Table 1 

Classification Results of different algorithms on BBUI dataset (Unit: %) 

Algorithms Transfer Learning Modality ACC SEN SPE YI 

SVM no TL BUS 82.21 ±2.46 81.43 ±3.92 83.05 ±6.30 64.48 ±5.24 

DNMSVM 84.11 ±3.36 87.34 ±3.69 80.73 ±5.66 68.07 ±6.67 

DCCA-SVM Feature-level TL BUS with 

EUS as SD 

83.34 ±2.32 87.39 ±5.39 79.16 ±7.70 66.56 ±4.48 

MRBM-SVM 83.35 ±3.55 84.32 ±5.30 82.24 ±5.61 66.56 ±7.10 

MDL-CW 84.48 ±4.35 85.18 ±0.35 83.92 ±8.77 69.10 ±9.05 

DPL-HD 85.23 ±4.35 85.92 ±1.53 84.66 ±7.69 70.58 ±8.76 

HFA Classifier-level TL BUS with 

EUS as SD 

84.85 ±4.62 86.69 ±4.96 83.03 ±6.41 69.72 ±9.20 

KRVFL + 85.21 ±5.31 85.95 ±6.33 84.60 ±8.41 70.54 ±10.54 

FSVM + Classifier-level TL BUS with 

EUS as SD 

84.11 ±2.78 84.37 ±3.08 83.77 ±3.73 68.15 ±5.87 

U-DSVM + 85.62 ±2.51 87.40 ±2.97 83.77 ±2.57 71.17 ±4.97 

DSVM + 86.69 ±3.78 88.11 ±4.42 86.91 ±5.94 75.02 ±8.86 

ML-DSVM + 88.26 ±1.40 90.45 ±5.00 87.63 ±5.56 78.08 ±4.45 
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Fig. 4. ROC curves and corresponding AUC values of different algorithms on the 

BBUI dataset. 
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nd 3.85% in accuracy, sensitivity, specificity, and YI, respectively, 

ver U-DSVM + , indicating the effectiveness of our proposed bidi- 

ectional transfer strategy. DSVM + also archives superior classifica- 

ion results compared to other TL algorithms and improves at least 

.46%, 2.25%, 0.72%, and 4.44% in terms of accuracy, sensitivity, 

pecificity, and YI, respectively. By further introducing the meta- 

earning into DSVM + , ML-DSVM + improves 1.57%, 2.34%, 0.72%, 

nd 3.06%, respectively, in the corresponding indices, over DSVM + . 

Fig. 4 gives the ROC curves and AUC values of all algorithms in 

ur experiments. The proposed ML-DSVM + achieves the best AUC 

alue of 0.921, suggesting its effectiveness on the BBUI dataset. 

.4. Experimental results on TADPOLE challenge dataset 

The subset of TADPOLE challenge dataset used in this work is 

n imbalanced dataset that includes 139 MCI subjects and 51 AD 

ubjects. Fig. 5 shows the classification accuracies of the 5-shot, 

0-shot, and 15-shot cases in ML-DSVM + with different numbers 

f hidden layers and nodes. 

The best accuracy in 5-shot and 10-shot cases are 89.47 ±2.88% 

nd 90.00 ±2.57%, while the best accuracy in 15-shot case is 

0.00 ±1.05% with the hidden layers as 3, nodes in each hidden 

ayer as 500, and the parameters C 1 , C 2 , λ1 and λ2 as 1, 1, 0.05 

nd 0.05, respectively. Obviously, the performance of the 15-shot 

ase is better than the other two. Therefore, the 15-shot case is 

hen compared with other algorithms with optimized parameters. 

Table 2 gives the classification results of different algorithms 

n the TADPOLE challenge dataset, which have a similar trend 

o those in Table 1 . ML-DSVM + again exhibits superior per- 

ormance compared with all the other algorithms. The best 

ean classification accuracy, sensitivity, specificity, and YI are 

0.00 ±1.05%, 72.55 ±3.87%, 96.40 ±2.26%, and 68.95 ±2.41%, respec- 
ig. 5. The classification accuracy on the TADPOLE challenge dataset with different comb

5-shot by the proposed ML-DSVM + . 

8 
ively. U-DSVM + improves 1.58%, 4.00%, 0.74%, and 4.74% in accu- 

acy, sensitivity, specificity, and YI, respectively, over FSVM + , which 

ndicates that the feature representation has been improved by 

NN. The proposed bidirectional transfer algorithm DSVM + im- 

roves 3.82% and 3.10% in sensitivity, and YI, respectively, over 

nidirectional transfer algorithms U-DSVM + . It indicates the supe- 

ior performance of the proposed bidirectional knowledge transfer 

trategy. DSVM + also achieves superior performance to the other 
inations of hidden layers and nodes in the cases of (a) 5-shot, (b) 10-shot, and (c) 
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Table 2 

Classification results of different algorithms on TADPOLE challenge dataset (Unit: %) 

Algorithms Transfer Learning Modality ACC SEN SPE YI 

SVM no TL MRI 83.16 ±4.88 52.91 ±11.65 94.23 ±2.89 47.14 ±13.88 

DNMSVM 86.32 ±3.07 64.73 ±4.51 94.23 ±3.66 58.96 ±5.88 

DCCA-SVM Feature-level TL MRI with 

PET as SD 

85.79 ±2.11 58.91 ±6.69 95.69 ±3.49 54.60 ±5.20 

MRBM-SVM 85.26 ±3.57 56.91 ±9.82 95.63 ±4.29 52.54 ±9.14 

MDL-CW 87.37 ±1.97 62.91 ±8.80 96.40 ±2.26 59.31 ±7.38 

DPL-HD 87.89 ±1.29 66.73 ±4.50 96.40 ±0.05 61.13 ±4.51 

HFA Classifier-level TL MRI with 

PET as SD 

84.21 ±2.35 62.91 ±6.12 92.09 ±2.66 55.00 ±5.94 

KRVFL + 84.74 ±4.21 60.91 ±8.07 93.52 ±3.51 54.43 ±10.27 

FSVM + Classifier-level TL MRI with 

PET as SD 

86.84 ±3.72 62.73 ±7.43 95.66 ±3.54 58.39 ±8.98 

U-DSVM + 88.42 ±1.29 66.73 ±4.17 96.40 ±0.05 63.13 ±4.19 

DSVM + 88.95 ±1.05 70.55 ±6.42 95.69 ±1.42 66.23 ±5.44 

ML-DSVM + 90.00 ±1.05 72.55 ±3.87 96.40 ±2.26 68.95 ±2.41 

Fig. 6. ROC curves and corresponding AUC values of different algorithms on the 

TADPOLE challenge dataset. 
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L algorithms with improvements by at least 1.06%, 3.82%, and 

.1% in accuracy, sensitivity, and YI, respectively. Higher sensitivity 

eans a higher true positive rate, which is more important for the 

edical imaging classification task with imbalanced data. By in- 

roducing meta-learning, ML-DSVM + improves 1.05%, 2.00%, 0.71%, 

nd 2.72% in the corresponding indices, over DSVM + . 

As shown in Fig. 6 , ML-DSVM + again outperforms other com- 

ared approaches with the highest true positive rate and the least 

alse positive rate with the best AUC value of 0.940. 
ig. 7. The classification accuracy on the ABIDE dataset with different combinations of hid

roposed ML-DSVM + . Each bar shows the average accuracy of 5-fold cross-validation. 
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.5. Experimental results on ABIDE dataset 

The comparison results of 5-shot, 10-shot and 15-shot in ML- 

SVM + are shown in Fig. 7 . The best accuracies in the 5-shot and

0-shot cases are 84.77 ±2.45% and 84.85 ±1.49%, respectively. The 

est accuracy in the 15-shot case is 85.76 ±3.12%, when the ML- 

SVM + has 3 hidden layers with 500 nodes, and the parameters 

 1 , C 2 , λ1 and λ2 are 1, 1, 0.05 and 0.05, respectively. It is then 

elected for comparison with other algorithms with optimized pa- 

ameters. 

The classification results of different algorithms on the ABIDE 

ataset are shown in Table 3 . ML-DSVM + again outperforms all the 

ompared algorithms with the best mean classification accuracy of 

5.76 ±3.12%, sensitivity of 88.73 ±7.22%, specificity of 82.60 ±1.56%, 

nd YI of 71.32 ±6.40%, respectively. 

As shown in Table 3 , DSVM + obtains superior accuracy than 

SVM + , indicating that the feature representation can be ef- 

ectively improved by DNN. DSVM + also achieves better accu- 

acy than the unidirectional TL algorithm U-DSVM + , demonstrat- 

ng the effectiveness of the proposed bidirectional TL strategy. 

he proposed ML-DSVM + achieves improvements of 3.64%, 1.82%, 

.46%, and 7.27% on accuracy, specificity, and YI, respectively, 

ver DSVM + , respectively. It can also be found that ML-DSVM + 

chieves the best AUC value of 0.820 in Fig. 8 . 

.6. Convergence and stability 

Fig. 9 shows the loss curves of DNMSVM, DSVM + , and ML- 

SVM + on the three datasets. To implement a fair comparison, we 

et the identical learning rates for each algorithm, so do the other 

arameters. The loss values are sampled every ten steps to visu- 

lize the trends clearly. It can be observed that the training loss 
den layers and nodes in the cases of (a) 5-shot, (b) 10-shot, and (c) 15-shot by the 
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Table 3 

Classification results of different algorithms on ABIDE dataset (Unit: %) 

Algorithms Transfer Learning Modality ACC SEN SPE YI 

SVM no TL rs-fMRI 73.26 ±8.89 70.55 ±10.25 76.49 ±13.49 47.04 ±17.66 

DNMSVM 81.21 ±2.06 85.09 ±4.80 77.14 ±5.55 62.23 ±3.93 

DCCA-SVM Feature-level TL rs-fMRI 

with MRI as SD 

81.21 ±3.53 83.45 ±5.77 79.62 ±8.08 63.07 ±6.78 

MRBM-SVM 80.38 ±1.86 78.20 ±3.62 82.95 ±4.84 61.16 ±3.17 

MDL-CW 80.30 ±2.54 81.45 ±5.80 78.96 ±5.28 60.42 ±4.85 

DPL-HD 81.29 ±1.06 83.27 ±3.88 79.35 ±3.54 62.63 ±2.03 

HFA Classifier-level TL rs-fMRI 

with MRI as SD 

77.65 ±4.14 79.23 ±7.69 75.93 ±5.80 55.16 ±8.44 

KRVFL + 78.56 ±3.38 75.19 ±9.87 80.95 ±3.35 56.14 ±8.60 

FSVM + Classifier-level TL rs-fMRI 

with MRI as SD 

80.23 ±9.52 79.09 ±7.36 81.15 ±14.73 60.24 ±18.37 

U-DSVM + 81.36 ±4.64 81.45 ±5.80 81.56 ±8.43 60.01 ±8.89 

DSVM + 82.12 ±2.94 86.91 ±4.93 77.14 ±5.55 64.05 ±5.81 

ML-DSVM + 85.76 ±3.12 88.73 ±7.22 82.60 ±1.56 71.32 ±6.40 

Fig. 8. ROC curves and corresponding AUC values of different algorithms on the 

ABIDE dataset. 
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f ML-DSVM + within 50 steps and always converges within 100- 

50 steps, which indicates the effectiveness of the proposed ML- 

SVM + . By contrast, when the training losses of DNMSVM and 

SVM + stagnate early, the loss of ML-DSVM + continues to de- 

rease. Fig. 9 shows that the loss values of DNMSVM and DSVM + 

ibrate after 100 steps, while the ML-DSVM + is already conver- 

ent. 
Fig. 9. Loss curves of ML-DSVM + , DSVM + and DNMSVM on (a) BBUI

10 
.7. Sensitivity analysis 

It is worth noting that there are four critical hyperparameters 

n the proposed ML-DSVM + , i.e. , C 1 , C 2 , λ1 , and λ2 . Thus, the TAD-

OLE dataset is selected as the example for the sensitivity analysis 

bout these hyperparameters, because it is a famous public dataset. 

s shown in Fig. 10 , we fix three hyperparameters and then con- 

uct the training procedure with different values of another hyper- 

arameter. 

The candidate of C 1 and C 2 are set as {0.001, 0.01, 0.1, 1, 10, 100, 

0 0 0}. The candidate of λ1 and λ2 are set as {0.0 0 05, 0.0 05, 0.05,

.5, 0.1, 1, 5}. As shown in Fig. 10 , it can be found that the best

ccuracy is obtained when C 1 and C 2 are close to 1. Moreover, λ1 

nd λ2 can be set to 0.05 for optimal accuracy. 

.8. Implementation efficiency 

In order to evaluate the efficiency of ML-DSVM + , we compared 

oth averaged training and testing time of different algorithms on 

he TADPOLE dataset as an example. The averaged training time 

as calculated using the values of all the 5-fold experiments, and 

he averaged testing time was calculated on each testing sample. 

s shown in Table 4 , ML-DSVM + takes more training time to con- 

erge. It is because meta-learning involves second-order computa- 

ion. However, the average testing time of ML-DSVM + is on the 

ame order of magnitude as other algorithms. 

. Discussion 

In this work, a novel ML-DSVM + algorithm is proposed to im- 

rove the performance of single-modal imaging-based CAD with 

ransferred knowledge from the related imaging modality. We first 
 dataset, (b) TADPOLE challenge dataset and (c) ABIDE dataset. 
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Fig. 10. Sensitivity analysis results for (a) C 1 , (b) C 2 , (c) λ1 , and (d) λ2 on the TADPOLE dataset. 

Table 4 

Implementation efficiency of different algorithms. 1 K denotes the batch 

size. 

Algorithms Training time (Unit: Sec) Testing time (Unit: Sec) 

DSVM 142.33 0.0048 

U-DSVM + 178.15 0.0051 

DSVM + 180.43 0.0062 

ML-DSVM + 208.26 0.0049 
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ntegrate the bi-channel DNNs and SVM + classifier into a uni- 

ormed framework, and then propose a coupled hinge loss for bidi- 

ectional TL to improve the transfer performance. Moreover, the 

eta-learning strategy is further adopted into DSVM + to allevi- 

te the overfitting caused by the significantly increased parameters 

n DNNs on small-size training samples. The experimental results 

n three medical imaging datasets indicate the effectiveness of the 

roposed ML-DSVM + . 

In clinical practice, paired multi-modal medical imaging data 

enerally share the same label. It is expected that the super- 

ised TL can achieve superior transfer performance for this type of 

aired data with the guidance of label information. Therefore, the 

UPI paradigm is suitable for knowledge transfer between paired 

ata with shared labels. It is known that feature representation 

s another critical module except for the classifier in a CAD sys- 

em. Because DL can improve the representation of hand-crafted 

eatures, we propose the DSVM + algorithm by integrating the bi- 

hannel DNNs and SVM + into a unified framework. The introduc- 

ion of DNNs can also avoid the issue of kernel selection in the 

riginal SVM + algorithm [20] . Moreover, we design a new coupled 

inge loss function to conduct bidirectional transfer in DSVM + 

nstead of unidirectional transfer in the original SVM + . The pro- 

osed coupled hinge loss has several advantages: 1) The bidirec- 

ional transfer strategy can simultaneously improve the feature 

epresentation of both the TD and SD networks with more knowl- 

dge interaction, and extract more transferable implicit knowledge 

rom these two domains; 2) The three terms in the coupled hinge 

oss can make full use of the shared labels to explore and guide 
11 
nowledge transfer in a supervised manner, and simultaneously 

mprove both feature representation and classification performance 

n a unified framework; 3) Although we do not add the transfer 

odule in both DNNs, they intrinsically realize knowledge transfer 

y updating the network parameters guided by the new coupled 

oss function. In addition, DSVM + simultaneously trains two inde- 

endent classifiers, which makes it more flexible for applications. 

Although the bi-channel DNNs improve feature representation, 

hey also significantly increase the parameters, which will result 

n the overfitting problem with limited medical imaging train- 

ng samples. To mitigate this issue, we propose introducing meta- 

earning to train the DSVM + model. In contrast to existing meta- 

earning methods that require a large number of different tasks to 

rain a model, the meta-tasks in ML-DSVM + are self-generated by 

andomly sampling instances from the training dataset. This strat- 

gy to generate meta-tasks is suitable for CAD tasks with improved 

erformance, because it is generally difficult to collect many differ- 

nt medical images with different diseases to build a large number 

f meta-tasks. Moreover, our sampling strategy controls each meta- 

ask to have equal numbers of positive and negative samples, and 

herefore, ML-DSVM + also overcomes the problem of class imbal- 

nce, which is very common in the field of CAD. It is worth noting 

hat the proposed ML-DSVM + can also be applied to the conven- 

ional meta-learning scenario, which adopts a lot of related tasks 

o train the base learner. 

. Conclusion 

In summary, we propose a novel LUPI-based algorithm, namely 

L-DSVM + , for the single-modal imaging-based CAD. ML-DSVM + 

ntegrates the bi-channel DNNs and SVM + into a unified frame- 

ork, which simultaneously improves both feature representation 

nd classification under the guidance of shared labels. The ex- 

erimental results on three datasets show that ML-DSVM + effec- 

ively improves the performance of single-modal imaging-based 

AD with the transferred knowledge from SD. It suggests the 

otential of ML-DSVM + for CAD, even with a small and class- 

mbalanced training set. 
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It still has room to improve the proposed ML-DSVM + . Due 

o the limited number of training samples, the shallow DNNs 

s adopted in ML-DSVM + to further improve the representation 

f hand-crafted features. In our future work, the proposed ML- 

SVM + can be easily extended to a CNN version by replacing the 

NN backbone with CNN, which will have more applications. Be- 

ides, to alleviate the overfitting issue on limited training samples, 

e will develop new optimization strategies to effectively reduce 

he complexity and also improve stability with small standard de- 

iation. Moreover, the feature-level TL strategy will be integrated 

nto the current ML-DSVM + to further promote its performance. 
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